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example, the 90th-percentile contribution of organic fertilizer N,O to farm-stage emissions is
16%, but for most wheat producers the contribution is near 0%. Density is estimated using a
Gaussian kernel with bandwidth selection performed with biased cross-validation. (C and D)

Contributions of emission sources for example producers with below-median GHG emissions.

organic soils associated with feed.
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Food: greenhouse gas emissions across the supply chain
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Fig. 4 | Soil carbon (C) having gaps for ruminant systems across the globe. a The
required amount of C-sequestration to offset the continuous emissions of CH, and
N,O from ruminants in different world regions over 100 years. The sizes of
doughnut charts reflect the total amount (in gigatonnes, Gt) of required
C-sequestration and the compositions of the doughnut charts explain the con-
tributions of different ruminant species and different gases. The calculations were
based on the Global Livestock Environmental Assessment Model (GLEAM 3.0)* and

this study. The base map for global regions was derived from Esri datasets. b The
required soil C-sequestration and current soil C stock in managed grasslands, in
terms of total amount for each region. ¢ The required soil C-sequestration and
current soil C stock in managed grasslands, in terms of per hectare of land for each
region. The data for soil C stock was derived from Global Soil Sequestration
Potential Map (GSOCseq VL1)*.



Fig. 3: Number of cattle ‘allowed’ for a given (maximum) soil carbon (C) sequestration

in grasslands to offset the climate impact in a range of possible enteric CH, emissions
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04-0.8 0-20 section 2.2.2.1
No-tillage as single No change 356580 0 >30 Baker et al. (2007); Luo et
factor 040 al. (2010)
Cover crops as single 0.32+0.08 158480 0.19 21+7 Poeplau & Don (2015)
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Panel 2: Feasibility of reference diet

Although the reference diet, which is based on health considerations, is consistent with
many traditional eating patterns, for some individuals or populations this diet might seem
extreme or not feasible. However, from a global perspective the features of this diet, which
could include strict vegetarian diets and consumption of modest amounts of animal source
foods, have well established traditions in various regions. The best studied example is the
Mediterranean diet, similar to the diet of Crete in the mid-20th century. This diet was low in
red meat (average intake of red meat and poultry combined was 35 g/day)** and largely
plant-based, but high in total fat intake (about 40% of energy) consumed mainly as olive
oil.*2 Greeks had one of the longest life expectancies at the time.*®

Many other traditional diets, such as those in Indonesia, Mexico, India, China, and West
Africa, also include little red meat, which might be consumed only on special occasions or
as minor ingredients of mixed dishes.*** Some of these cultures have also consumed few
or no dairy foods, often corresponding with lactose intolerance and lower rates of bone
fracture than have countries with high dairy consumption.*” High consumption of nuts is
traditional in some West African populations (ie, about 100 g/day in Niger) and large
amounts of soy foods are consumed in many Asian populations (ie, 46 g/day in Taiwan).*
Legume consumption has traditionally been high in many cultures, such as Mexico, India,
and Rwanda.***# Thus, ample precedent exists for the ranges of food intakes represented
by the reference diet, and the culinary experiences of different regions provide many
opportunities to learn new ways of preparing diets that are healthy and enjoyable.

References cited in this panel can be found in the appendix (p 27)

Macronutrient Caloric
intake (possible intake,

range), g/day keal/day
Whole grains*
Rice, wheat, corn, and othert 232 (total gains 811
0-60% of energy)
Tubers or starchy vegetables
Potatoes and cassava 50 (0-100) 39
Vegetables
All vegetables 300 (200-600)
Dark green vegetables 100 23
Red and orange vegetables 100 30
Other vegetables 100 25
Fruits
All fruit 200 (100-300) 126
Dairy foods
Whole milk or derivative equivalents 250 (0-500) 153
(eg, cheese)
Protein sources}
Beef and lamb 7(0-14) 15
Pork 7(0-14) 15
Chicken and other poultry 29 (0-58) 62
Eggs 13(0-25) 19
Fish§ 28 (0-100) 40
Legumes
Dry beans, lentils, and peas* 50(0-100) 172
Soy foods 25 (0-50) 112
Peanuts 25(0-75) 142
Tree nuts 25 149
Added fats
Palm oil 6-8 (0-6-8) 60
Unsaturated oilsq] 40(20-80) 354
Dairy fats (included in milk) 0 0
Lard or tallow]| 5(0-5) 36
Added sugars
All sweeteners 31(0-31) 120

For an individual, an optimal energy intake to maintain a healthy weight will
depend on body size and level of physical activity. Processing of foods such as
partial hydrogenation of oils, refining of grains, and addition of salt and
preservatives can substantially affect health but is not addressed in this table.
*Wheat, rice, dry beans, and lentils are dry, raw. tMix and amount of grains can vary
to maintain isocaloric intake. $Beef and lamb are exchangeable with pork and vice
versa. Chicken and other poultry is exchangeable with eggs, fish, or plant protein
sources. Legumes, peanuts, tree nuts, seeds, and soy are interchangeable. §Seafood
consist of fish and shellfish (eg, mussels and shrimps) and originate from both
capture and from farming. Although seafood is a highly diverse group that contains
both animals and plants, the focus of this report is solely on animals. flUnsaturated
oils are 20% each of olive, soybean, rapeseed, sunflower, and peanut oil. ||Some lard
ortallow are optional in instances when pigs or cattle are consumed.

Table 1: Healthy reference diet, with possible ranges, for an intake of
2500 keal/day
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Figure 1: Diet gap between dietary patterns in 2016 and reference diet intakes of food



Description

Indicative government role

Indicative industry role

Indicative civil society role

Eliminate
choice

Restrict choice

Guide choices
through
disincentives

Guide choices
through
incentives

Guide choice by
changing
default policy

Enable choice

Provide
information

Do nothing

Channel actions only to the
desired end and isolate
inappropriate actions

Remove inappropriate choice
options

Apply taxes or charges

Use regulations or financial
incentives

Provide better options

Enable individuals to change
behaviour

Inform or educate the public

No action or only monitor
situation

Set goals for a zero or negative-effect food system

Model choice editing or rationing on a population
scale

Develop multicriteria interventions, building on
existing developments such as carbon and sugar
taxation, and scoping others such as marketing
controls, carbon-calorie connections

Interagency, cross-government engagement with
the consuming public

Recognise the problem but not give it high priority

The market economics position, currently manifest
via logos and branding appeals

Mass, public information campaigns

The all-too common baseline of inactivity, which
can be maintained by vested interest support

Interventions are hard to soft from top to bottom.” NGO=Non-governmental organisation.

Withdraw inappropriate products; diversify the
business

Allocate funding to favour sustainable and
healthy products

Use of contracts and conditions to shape supply
chains

Consumer reward schemes

Already being pioneered by retailers in their
own-label products, and by in food service actors
through menu planning, reformulation

Focused marketing on only healthy and
sustainably produced foods

Prioritisation of brands which appeal to eat
differently,

Rely on public relations or media advisers to alert
as to coming difficulties

Win public support for elimination
of unhealthy diets

Campaign for banning and pariah
status of key products and processes

Disinvestment campaigns

Build cultural appeal for healthy
diets from sustainable food
systems

Legislative change campaigns

Campaign for alternative products

Led by NGOs, brands and some
commercial interests

Ignore the wider picture and stick
to narrow spheres of interest

Table 6: Applying the Nuffield Ladder of Policy Intervention to Health Diets from Sustainable Food Systems
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But GHG emissions are not the only problem

e Land use

Land Use
(m*year)
A 100 g protein o) D 1 liter l
Beef (beef herd) L - 61 Palm Oil 36
Lamb & Mutton - 80 Soybean Oil 41
Beef (dairy herd) i 60 Olive Oil } ._‘. — o 5T
0 100 200 300 Rapeseed Oil I 44
Sunflower il 35
Crustaceans (farmed) 72 o 10 0 0
—> oo e -% E i
—l Pig Meat 44 Tomatoes h - 67
Fish {farmed) ‘, 59 Brassicas F 5 — 58
Poultry Meat M Onicns & Leeks 40
Eggs L 35 Foot V j . . 49
Tofu L.l ag F - 0 0.5 1 15
Groundnuts 40 Berries . 5@
Other Pulses 48 Bananas *1 .
Poas L 48 Apples 42
uts B M 0% Citrus L_'ﬁ 19
(1] 10 20 30 0 2 4 &
B 1 liter I G 1 kg
Milk -8 Cane Sugar 4z
Soymilk | 38 Best Sugar ‘ “
0 2 6 9 0 15 3 45
C 1000 keal H 1 unit
Cassava h 47 Bear (5% ABV) 53
Rice (flooded) 1 52 Wine (12.5% ABV) ; 4
Oatmeal - 42 o 0.2 0.4 06
Potatoes . a7 | 1 serving
Dark Chocolate (50g) 46

Wheat & Rye (Bread)
Maize (Meal)

55
58

Coffea (15g, 1 cup)

69

Private
family

National
parks

Federal
wilderness

State parks

Barley
(beer) hUrb'an
ousing
Urban
commercial
o Maple

timberland

Timber
clear-cut]

Federal/state
timberland

Cow
pasture/range

syrup

Wildfires exports
Livestock
Corporate feed Ethanol
timberland Sheep/
goats/ Golf
other ke Farmsteads |——7MF———
; : Christmas
Weyerhaeuser rcdal Righweys Feed exports trees
Railroads
. 100 largest
Airports landowning
Wetlands/ families
desert

Merril D. & Leatherby L., «Here’s how America
Uses Its Land», Bloomberg, 13.07.2018
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